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S3D production runs on Titan Cray XK7 (125k cores) 
9 process/node failures over 24 hours 
Failures are promoted to job failures 

Checkpoint (5.2 MB/core) stored in the PFS 

Average Total 
Checkpoint data  55 s 1.72 % 
Restarting processes 470 s 5.67 % 
Loading checkpoint 44 s 1.38 % 
Rollback overhead 1654 s 22.63 % 
Total overhead due to fault tolerance 31.40 % 

As leadership class computers continue to increase in size, challenges like power and resilience become major 
concerns. Our goal is to model power consumption of several resilience techniques using scientific simulations in 
order to suggest a holistic cross-layer power and resilience management API that allows balancing tradeoffs and 
meet power budgets. This contrasts with the current way to handle these requirements, done mainly by the 
hardware and, in some cases, by the OS or runtime.  
 
Since resilience algorithms are typically power-hungry, we begin by studying their power requirements. This allows 
us to understand the costs and tradeoffs between power and resilience guarantees of different fault tolerance 
mechanisms, which can include the evaluation of the used levels of memory hierarchy (SSD/NVRAM/DRAM) and 
which can be turned off. We then design a cross-layered power and resilience management API so that 
application programmers can choose the minimum level of resilience required in each code segment. By letting 
the application specify the requirements, lower levels (runtime/OS) will be able to choose the most convenient 
fault tolerance solution and configure the hardware appropriately. That will be done by developing policies to 
control the knobs to balance tradeoffs and meet power budgets. 

Node performance
On-line

API

Physical resouce
for Persistent Storage

Off-line/Static

Reliability Model Recovery Scheme

Application

Motivation 

System Architecture 

0.001$

0.01$

0.1$

1$

10$

100$

1$

10$

100$

1000$

512$ 1024$ 1536$

E
xe

cu
tio

n 
Ti

m
e 

fo
r C

om
m

it/
R

es
to

re
 

D
at

a 
S

iz
e 

pe
r P

ro
ce

ss
 in

 M
B

 

Global Mesh Size (X=Y=Z) 

Redundant Storage of MiniFE: 2,048 Processes 
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Coupled Codes: In-transit Analysis for Increased Resilience 

•  For some systems and applications, storage can be power 
hungry. Application has the knowledge to decide. 

•  Exploit Data Dependencies of Application data 
•  Recovery through inexpensive local computation 

•  Reuse the existing Matrix Assembly code 
•  Localized matrix regeneration 

•  Substantial storage reduction 

Exascale computing is the result of increasing 
demands from science and engineering. 
 
Power and Resilience are two major issues 
towards an exascale machine. 
 
Current approach: 
•  Focus on Resilience with low Performance 

impact 
•  Focus on Power with low Performance impact 
•  Some recent efforts tackle Resilience and 

Power 
 
Proposed: 
•  Tackle Resilience, Power and Performance 

together 

Current Resilience and Power Management approach: 
•  Each layer try to offer the view of a resilient substrate and 

automatic power management to the higher-level layer: 
•  Processor and Memory: correct bit flips via ECC and 

control power consumption with proprietary policies 
•  OS: automatic DVFS, Checksum-based Data 

Redundancy (RAID), in-node processing redundancy 
•  Runtime: offer resilient abstraction of the machine by 

using replication, automatic checkpoint restart, or 
message logging. 

These abstractions may not be the best option in all cases, 
and may result in degraded power and performance. 
 
Proposed: 
•  Application-centric, cross-layer power and resilience 

management 
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Application uses our API to specify goals or requirements for power, resilience, and performance. 
 
Based on, 
•  on-line node measurements and application goals, a certain recovery scheme or reliability model will be chosen. 
•  off-line, pre-determined formulas, the hints from the application, and system status, the API will decide which 

storage to use in order to achieve a goal (i.e., optimize power consumption). 
 
Embed analytical models to describe behavior of network and storage and combine it with dynamic measurements. 
 
We will use Sandia’s PowerAPI to control the power usage of each node, of the network and storage 
We will leverage Fenix and FenixLR to control recovery procedures. 
 
The application might get feedback from our API so that it can decide how to react to certain events: 
•  Hard/soft failures 
•  High/low power consumption 
 

Towards exascale, O(1) process/node failure per minute 
•  Checkpoint frequency has to be dramatically increased 
•  Current checkpoint cost, O(1) minute, is unfeasible 

•  Recovery cost must be reduced 
•  Node failures cannot be propagated 

local online recovery 

in-memory, application-specific, 
local, fine-grained, 

high-frequency checkpointing 

S3D: Recovering Locally and Reducing Peak Power 
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Local recovery has better power and energy behavior as compared to global 
recovery as the entire system does not have to roll back and redo 
computations.  
Local recovery also enables masking multiple failures (left): 
•  time to solution appear as if only a single failure occurred 
Trading off Failure Masking for Reduced Peak Power 
•  Depending on the system MTBF or on the usage of collective operations, 

it might be more beneficial to throttle the power of survived processes 
that have to wait after the failure so that the effect of the failure is 
immediately spread to the whole system. 

Reducing hardware reliability to reduce power consumption 
•  Power-hungry hardware resilience mechanisms (ECC) can be turned off. 
•  If the application can easily identify these failures, failure masking can be 

used to tolerate them with low to none performance overhead. 

Illustrative Usecases 

MiniFE: Reducing Impact of Checkpointing by Recomputing 
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frequency of analysis
(simulation steps between analysis)

•  Online analysis offers scientists the possibility of observing 
results from a long-running simulation before it finishes 

•  Several approaches have been suggested: 
•  In-situ offers faster turn-around times but interrupts the 

execution  
•  In-transit does not interrupt the simulation but requires 

data movement 

•  If the reliability model requires checkpointing to an staging area, 
the analysis can occur on the checkpoints themselves. 

•  Even though this can be more costly in terms of power, the cost 
of data movement is amortized by checkpointing and analysis. 
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