
Towards Cross-layer Power and
Resilience Management

Marc Gamell*, Ivan Rodero*, Keita Teranishi+, Manish Parashar*

Abstract

Rutgers Discovery Informatics Institute (RDI2)

RDI2
Rutgers Discovery Informatics Institute

rdi2.rutgers.edu

Titan Cray XK7 supercomputer, ORNL Result of an S3D simulation, ExaCT, SNL

* Rutgers Discovery Informatics Institute (RDI2), Rutgers University
+ Scalable Modeling & Analysis, Sandia National Laboratories

Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

S3D production runs on Titan Cray XK7 (125k cores)
9 process/node failures over 24 hours
Failures are promoted to job failures

Checkpoint (5.2 MB/core) stored in the PFS

Average Total
Checkpoint data 55 s 1.72 %
Restarting processes 470 s 5.67 %
Loading checkpoint 44 s 1.38 %
Rollback overhead 1654 s 22.63 %
Total overhead due to fault tolerance 31.40 %

As leadership class computers continue to increase in size, challenges like power and resilience become major
concerns. Our goal is to model power consumption of several resilience techniques using scientific simulations in
order to suggest a holistic cross-layer power and resilience management API that allows balancing tradeoffs and
meet power budgets. This contrasts with the current way to handle these requirements, done mainly by the
hardware and, in some cases, by the OS or runtime.

Since resilience algorithms are typically power-hungry, we begin by studying their power requirements. This allows
us to understand the costs and tradeoffs between power and resilience guarantees of different fault tolerance
mechanisms, which can include the evaluation of the used levels of memory hierarchy (SSD/NVRAM/DRAM) and
which can be turned off. We then design a cross-layered power and resilience management API so that
application programmers can choose the minimum level of resilience required in each code segment. By letting
the application specify the requirements, lower levels (runtime/OS) will be able to choose the most convenient
fault tolerance solution and configure the hardware appropriately. That will be done by developing policies to
control the knobs to balance tradeoffs and meet power budgets.

Node performance
On-line

API

Physical resouce
for Persistent Storage

Off-line/Static

Reliability Model Recovery Scheme

Application

Motivation

System Architecture

0.001$

0.01$

0.1$

1$

10$

100$

1$

10$

100$

1000$

512$ 1024$ 1536$

E
xe

cu
tio

n
Ti

m
e

fo
r C

om
m

it/
R

es
to

re

D
at

a
S

iz
e

pe
r P

ro
ce

ss
 in

 M
B

Global Mesh Size (X=Y=Z)

Redundant Storage of MiniFE: 2,048 Processes
Data$Size$:StoreAll
Data$Size:$Regenrate$Matrix$
Commit/Restore:$Store$All$$
Restore:$Regenrate$Matrix$
Commit:$Regenerate$Matrix$

Topology$
(Mesh)$$

Tensor$
(SEffness$
Matrix)$

IniEal$
CondiEon$

Matrix$

Matrix$$
RegeneraEon$

Latest$$
CondiEon$

$
$ k −k

−k k

"

#
$

%

&
' f (x, y, z, 0) f (x, y, z, i)

Coupled Codes: In-transit Analysis for Increased Resilience

•  For some systems and applications, storage can be power
hungry. Application has the knowledge to decide.

•  Exploit Data Dependencies of Application data
•  Recovery through inexpensive local computation

•  Reuse the existing Matrix Assembly code
•  Localized matrix regeneration

•  Substantial storage reduction

Exascale computing is the result of increasing
demands from science and engineering.

Power and Resilience are two major issues
towards an exascale machine.

Current approach:
•  Focus on Resilience with low Performance

impact
•  Focus on Power with low Performance impact
•  Some recent efforts tackle Resilience and

Power

Proposed:
•  Tackle Resilience, Power and Performance

together

Current Resilience and Power Management approach:
•  Each layer try to offer the view of a resilient substrate and

automatic power management to the higher-level layer:
•  Processor and Memory: correct bit flips via ECC and

control power consumption with proprietary policies
•  OS: automatic DVFS, Checksum-based Data

Redundancy (RAID), in-node processing redundancy
•  Runtime: offer resilient abstraction of the machine by

using replication, automatic checkpoint restart, or
message logging.

These abstractions may not be the best option in all cases,
and may result in degraded power and performance.

Proposed:
•  Application-centric, cross-layer power and resilience

management

Performance

Hardware

Resilience

Power

Performance Resilience

Power

OS

Runtime

App

Application uses our API to specify goals or requirements for power, resilience, and performance.

Based on,
•  on-line node measurements and application goals, a certain recovery scheme or reliability model will be chosen.
•  off-line, pre-determined formulas, the hints from the application, and system status, the API will decide which

storage to use in order to achieve a goal (i.e., optimize power consumption).

Embed analytical models to describe behavior of network and storage and combine it with dynamic measurements.

We will use Sandia’s PowerAPI to control the power usage of each node, of the network and storage
We will leverage Fenix and FenixLR to control recovery procedures.

The application might get feedback from our API so that it can decide how to react to certain events:
•  Hard/soft failures
•  High/low power consumption

Towards exascale, O(1) process/node failure per minute
•  Checkpoint frequency has to be dramatically increased
•  Current checkpoint cost, O(1) minute, is unfeasible

•  Recovery cost must be reduced
•  Node failures cannot be propagated

local online recovery

in-memory, application-specific,
local, fine-grained,

high-frequency checkpointing

S3D: Recovering Locally and Reducing Peak Power

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100

W
al

l t
im

e
(s

)

Rank
Core #

W
al

l t
im

e

Local recovery has better power and energy behavior as compared to global
recovery as the entire system does not have to roll back and redo
computations.
Local recovery also enables masking multiple failures (left):
•  time to solution appear as if only a single failure occurred
Trading off Failure Masking for Reduced Peak Power
•  Depending on the system MTBF or on the usage of collective operations,

it might be more beneficial to throttle the power of survived processes
that have to wait after the failure so that the effect of the failure is
immediately spread to the whole system.

Reducing hardware reliability to reduce power consumption
•  Power-hungry hardware resilience mechanisms (ECC) can be turned off.
•  If the application can easily identify these failures, failure masking can be

used to tolerate them with low to none performance overhead.

Illustrative Usecases

MiniFE: Reducing Impact of Checkpointing by Recomputing

0

0.5

1

1.5

2

2.5

x 10
4

2
4

8
16

32

instaging 8S8A
instaging 8S4A

insitu 6S2A
insitu 7S1A

E
n
e
rg

y
 c

o
n
su

m
p
ti

o
n
 (

kJ
)

frequency of analysis
(simulation steps between analysis)

•  Online analysis offers scientists the possibility of observing
results from a long-running simulation before it finishes

•  Several approaches have been suggested:
•  In-situ offers faster turn-around times but interrupts the

execution
•  In-transit does not interrupt the simulation but requires

data movement

•  If the reliability model requires checkpointing to an staging area,
the analysis can occur on the checkpoints themselves.

•  Even though this can be more costly in terms of power, the cost
of data movement is amortized by checkpointing and analysis.

SAND2015-6722C

